3.21.91 \(\int \frac {(3+5 x)^2}{(1-2 x)^{3/2} (2+3 x)^3} \, dx\) [2091]

Optimal. Leaf size=88 \[ \frac {121}{14 \sqrt {1-2 x} (2+3 x)^2}-\frac {545 \sqrt {1-2 x}}{147 (2+3 x)^2}-\frac {2045 \sqrt {1-2 x}}{2058 (2+3 x)}-\frac {2045 \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{1029 \sqrt {21}} \]

[Out]

-2045/21609*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)+121/14/(2+3*x)^2/(1-2*x)^(1/2)-545/147*(1-2*x)^(1/2)/
(2+3*x)^2-2045/2058*(1-2*x)^(1/2)/(2+3*x)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {91, 79, 44, 65, 212} \begin {gather*} -\frac {2045 \sqrt {1-2 x}}{2058 (3 x+2)}-\frac {545 \sqrt {1-2 x}}{147 (3 x+2)^2}+\frac {121}{14 \sqrt {1-2 x} (3 x+2)^2}-\frac {2045 \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{1029 \sqrt {21}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(3 + 5*x)^2/((1 - 2*x)^(3/2)*(2 + 3*x)^3),x]

[Out]

121/(14*Sqrt[1 - 2*x]*(2 + 3*x)^2) - (545*Sqrt[1 - 2*x])/(147*(2 + 3*x)^2) - (2045*Sqrt[1 - 2*x])/(2058*(2 + 3
*x)) - (2045*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(1029*Sqrt[21])

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 91

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c - a*d
)^2*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d^2*(d*e - c*f)*(n + 1))), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {(3+5 x)^2}{(1-2 x)^{3/2} (2+3 x)^3} \, dx &=\frac {121}{14 \sqrt {1-2 x} (2+3 x)^2}-\frac {1}{14} \int \frac {-610+175 x}{\sqrt {1-2 x} (2+3 x)^3} \, dx\\ &=\frac {121}{14 \sqrt {1-2 x} (2+3 x)^2}-\frac {545 \sqrt {1-2 x}}{147 (2+3 x)^2}+\frac {2045}{294} \int \frac {1}{\sqrt {1-2 x} (2+3 x)^2} \, dx\\ &=\frac {121}{14 \sqrt {1-2 x} (2+3 x)^2}-\frac {545 \sqrt {1-2 x}}{147 (2+3 x)^2}-\frac {2045 \sqrt {1-2 x}}{2058 (2+3 x)}+\frac {2045 \int \frac {1}{\sqrt {1-2 x} (2+3 x)} \, dx}{2058}\\ &=\frac {121}{14 \sqrt {1-2 x} (2+3 x)^2}-\frac {545 \sqrt {1-2 x}}{147 (2+3 x)^2}-\frac {2045 \sqrt {1-2 x}}{2058 (2+3 x)}-\frac {2045 \text {Subst}\left (\int \frac {1}{\frac {7}{2}-\frac {3 x^2}{2}} \, dx,x,\sqrt {1-2 x}\right )}{2058}\\ &=\frac {121}{14 \sqrt {1-2 x} (2+3 x)^2}-\frac {545 \sqrt {1-2 x}}{147 (2+3 x)^2}-\frac {2045 \sqrt {1-2 x}}{2058 (2+3 x)}-\frac {2045 \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{1029 \sqrt {21}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 70, normalized size = 0.80 \begin {gather*} \frac {35574-29575 (1-2 x)+6135 (1-2 x)^2}{1029 (-7+3 (1-2 x))^2 \sqrt {1-2 x}}-\frac {2045 \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{1029 \sqrt {21}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(3 + 5*x)^2/((1 - 2*x)^(3/2)*(2 + 3*x)^3),x]

[Out]

(35574 - 29575*(1 - 2*x) + 6135*(1 - 2*x)^2)/(1029*(-7 + 3*(1 - 2*x))^2*Sqrt[1 - 2*x]) - (2045*ArcTanh[Sqrt[3/
7]*Sqrt[1 - 2*x]])/(1029*Sqrt[21])

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 57, normalized size = 0.65

method result size
risch \(\frac {12270 x^{2}+17305 x +6067}{2058 \left (2+3 x \right )^{2} \sqrt {1-2 x}}-\frac {2045 \arctanh \left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{21609}\) \(46\)
derivativedivides \(\frac {242}{343 \sqrt {1-2 x}}+\frac {-\frac {19 \left (1-2 x \right )^{\frac {3}{2}}}{49}+\frac {131 \sqrt {1-2 x}}{147}}{\left (-4-6 x \right )^{2}}-\frac {2045 \arctanh \left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{21609}\) \(57\)
default \(\frac {242}{343 \sqrt {1-2 x}}+\frac {-\frac {19 \left (1-2 x \right )^{\frac {3}{2}}}{49}+\frac {131 \sqrt {1-2 x}}{147}}{\left (-4-6 x \right )^{2}}-\frac {2045 \arctanh \left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{21609}\) \(57\)
trager \(-\frac {\left (12270 x^{2}+17305 x +6067\right ) \sqrt {1-2 x}}{2058 \left (2+3 x \right )^{2} \left (-1+2 x \right )}+\frac {2045 \RootOf \left (\textit {\_Z}^{2}-21\right ) \ln \left (\frac {3 \RootOf \left (\textit {\_Z}^{2}-21\right ) x -5 \RootOf \left (\textit {\_Z}^{2}-21\right )+21 \sqrt {1-2 x}}{2+3 x}\right )}{43218}\) \(79\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+5*x)^2/(1-2*x)^(3/2)/(2+3*x)^3,x,method=_RETURNVERBOSE)

[Out]

242/343/(1-2*x)^(1/2)+18/343*(-133/18*(1-2*x)^(3/2)+917/54*(1-2*x)^(1/2))/(-4-6*x)^2-2045/21609*arctanh(1/7*21
^(1/2)*(1-2*x)^(1/2))*21^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 83, normalized size = 0.94 \begin {gather*} \frac {2045}{43218} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) + \frac {6135 \, {\left (2 \, x - 1\right )}^{2} + 59150 \, x + 5999}{1029 \, {\left (9 \, {\left (-2 \, x + 1\right )}^{\frac {5}{2}} - 42 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + 49 \, \sqrt {-2 \, x + 1}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^2/(1-2*x)^(3/2)/(2+3*x)^3,x, algorithm="maxima")

[Out]

2045/43218*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 1/1029*(6135*(2*x - 1)
^2 + 59150*x + 5999)/(9*(-2*x + 1)^(5/2) - 42*(-2*x + 1)^(3/2) + 49*sqrt(-2*x + 1))

________________________________________________________________________________________

Fricas [A]
time = 0.98, size = 84, normalized size = 0.95 \begin {gather*} \frac {2045 \, \sqrt {21} {\left (18 \, x^{3} + 15 \, x^{2} - 4 \, x - 4\right )} \log \left (\frac {3 \, x + \sqrt {21} \sqrt {-2 \, x + 1} - 5}{3 \, x + 2}\right ) - 21 \, {\left (12270 \, x^{2} + 17305 \, x + 6067\right )} \sqrt {-2 \, x + 1}}{43218 \, {\left (18 \, x^{3} + 15 \, x^{2} - 4 \, x - 4\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^2/(1-2*x)^(3/2)/(2+3*x)^3,x, algorithm="fricas")

[Out]

1/43218*(2045*sqrt(21)*(18*x^3 + 15*x^2 - 4*x - 4)*log((3*x + sqrt(21)*sqrt(-2*x + 1) - 5)/(3*x + 2)) - 21*(12
270*x^2 + 17305*x + 6067)*sqrt(-2*x + 1))/(18*x^3 + 15*x^2 - 4*x - 4)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**2/(1-2*x)**(3/2)/(2+3*x)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 1.45, size = 77, normalized size = 0.88 \begin {gather*} \frac {2045}{43218} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) + \frac {242}{343 \, \sqrt {-2 \, x + 1}} - \frac {57 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 131 \, \sqrt {-2 \, x + 1}}{588 \, {\left (3 \, x + 2\right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^2/(1-2*x)^(3/2)/(2+3*x)^3,x, algorithm="giac")

[Out]

2045/43218*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 242/343/sqrt(
-2*x + 1) - 1/588*(57*(-2*x + 1)^(3/2) - 131*sqrt(-2*x + 1))/(3*x + 2)^2

________________________________________________________________________________________

Mupad [B]
time = 0.06, size = 62, normalized size = 0.70 \begin {gather*} \frac {\frac {8450\,x}{1323}+\frac {2045\,{\left (2\,x-1\right )}^2}{3087}+\frac {857}{1323}}{\frac {49\,\sqrt {1-2\,x}}{9}-\frac {14\,{\left (1-2\,x\right )}^{3/2}}{3}+{\left (1-2\,x\right )}^{5/2}}-\frac {2045\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{21609} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x + 3)^2/((1 - 2*x)^(3/2)*(3*x + 2)^3),x)

[Out]

((8450*x)/1323 + (2045*(2*x - 1)^2)/3087 + 857/1323)/((49*(1 - 2*x)^(1/2))/9 - (14*(1 - 2*x)^(3/2))/3 + (1 - 2
*x)^(5/2)) - (2045*21^(1/2)*atanh((21^(1/2)*(1 - 2*x)^(1/2))/7))/21609

________________________________________________________________________________________